Fundamentals Of High Frequency Cmos Analog Integrated Circuits | b3bc9af1f6ad8902e324d9b7dadf1edf

High-Frequency Integrated Circuits
CMOS PLL Synthesizers: Analysis and Design
IEEE Transactions on Circuits and Systems
All-Digital Frequency Synthesizer in Deep-Submicron CMOS
CMOS Linear Transconductance Element and Its Applications in Integrated High-frequency Filters
Multiband Dual-Function CMOS RFIC Filter-Switches
High-Frequency Oscillator Design for Integrated Transceivers
CMOS Continuous-Time Adaptive Equalizers for High-Speed Serial Links
Fundamentals of High-Frequency CMOS Analog Integrated Circuits
Fundamentals of Analog Circuits
High Frequency Communication and Sensing
High Frequency Continuous Time Filters in Digital CMOS Processes
Fundamentals of High-frequency CMOS Analog Integrated Circuits
CMOS Analog and Mixed-Signal Circuit Design
Low-Frequency Noise in Advanced MOS Devices
High-Frequency CMOS Analog Integrated Circuits
Millimeter-Wave Digitally Intensive Frequency Generation in CMOS
CMOS RF Modeling, Characterization and Applications
Radio-Frequency Integrated-Circuit Engineering
Low-Voltage CMOS RF Frequency Synthesizers
Radio Frequency Integrated Circuits
Systems
Comparators in Nanometer CMOS Technology
Systematic Design of Analog CMOS Circuits
Design of Bipolar Monolithic Video-frequency Filters
Design of CMOS Phase-Locked Loops
Fundamentals of Modern Photography
CMOS Time-Mode Circuits and Systems
Op Amps for Everyone
Fundamentals Of High-Frequency Cmos Analog Integrated Circuits (South Asian Edition)
Fundamentals of RF and Microwave Transistor Amplifiers
High-Frequency Bipolar Transistors
Design of Very High-Frequency Multirate Switched-Capacitor Circuits
Radio-Frequency Integrated-Circuit Engineering
Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers
Fundamentals of High Frequency CMOS Analog Integrated Circuits
Digital Fundamentals with PLD Programming
CMOS RFIC Design Principles
MicroCMOS Design
IEICE Transactions on Electronics
Low-Power High-Level Synthesis for Nanoscale CMOS Circuits

High-Frequency Integrated Circuits

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. • Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers • Blends analog and microwave engineering approaches for RFIC design at high frequencies • Includes problems at the end of each chapter

CMOS PLL Synthesizers: Analysis and Design

Key features include the basics of photography such as the nature of light, lens construction, and fundamental concepts, as well as sections on film, cameras, accessories, processing, and all other aspects of digital photography from image capture to output. The book also deals with important subjects usually ignored in manuals, including critical theory, how to present images, ethical issues, and copyright. Practical exercises and summaries are included in each chapter, providing a complete set of tutorials.

IEEE Transactions on Circuits and Systems

This modern, pedagogic textbook from leading author Behzad Razavi provides a comprehensive and rigorous introduction to CMOS PLL design, featuring intuitive presentation of theoretical concepts, extensive circuit simulations, over 200 worked examples, and 250 end-of-chapter problems. The perfect text for senior undergraduate and graduate students.

All-Digital Frequency Synthesizer in Deep-Submicron CMOS

A CMOS Linear Transconductance Element and Its Applications in Integrated High-frequency Filters

This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as...
compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets. The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of UWB systems including UWB advantages and applications, signals, basic modulations, transmitter and receiver frontends, and antennas. The fourth chapter addresses the design of UWB transmitters including an overview of basic components, design of pulse generator, BPSK modulator design, and design of a UWB tunable transmitter. Chapter 5 presents the design of UWB receivers including the design of UWB low-noise amplifiers, correlators, and a UWB 1 receiver. Chapter 6 covers the design of a UWB uniplanar antenna. Finally, a summary and conclusion is given in Chapter 7.

Multiband Dual-Function CMOS RFIC Filter-Switches

High-Frequency Oscillator Design for Integrated Transceivers

The purpose of this book is to provide a complete working knowledge of the Complementary Metal-Oxide Semiconductor (CMOS) analog and mixed-signal circuit design, which can be applied for System on Chip (SOC) or Application-Specific Standard Product (ASSP) development. It begins with an introduction to the CMOS analog and mixed-signal circuit design with further coverage of basic devices, such as the Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) with both long- and short-channel operations, photo devices, fitting ratio, etc. Seven chapters focus on the CMOS analog and mixed-signal circuit design of amplifiers, low power amplifiers, voltage regulator-reference, data converters, dynamic analog circuits, color and image sensors, and peripheral (oscillators and Input/Output [I/O]) circuits, and Integrated Circuit (IC) layout and packaging. Features: Provides practical knowledge of CMOS analog and mixed-signal circuit design Includes recent research in CMOS color and image sensor technology Discusses sub-blocks of typical analog and mixed-signal IC products Illustrates several design examples of analog circuits together with layout Describes integrating based CMOS color circuit

CMOS Continuous-Time Adaptive Equalizers for High-Speed Serial Links

A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help readers test their basic amplifier and circuit design skills-and more than half of the problems feature fully worked-out solutions. With an emphasis on theory, design, and everyday applications, this book is geared toward students, teachers, scientists, and practicing engineers who are interested in broadening their knowledge of RF and microwave transistor amplifier circuit design.

Fundamentals of High Frequency CMOS Analog Integrated Circuits

This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.

Fundamentals of Analog Circuits

Reflecting lengthy experience in the engineering industry, this bestseller provides thorough, up-to-date coverage of digital fundamentals-from basic concepts to microprocessors, programmable logic, and digital signal processing. Floyd's acclaimed emphasis on applications using real devices and on troubleshooting gives users the problem-solving experience they'll need in their professional careers. Known for its clear, accurate explanations of theory supported by superior exercises and examples, this book's full-color format is packed with the visual aids today's learners need to grasp often complex concepts. KEY TOPICS The book features a comprehensive review of fundamental topics and a unique introduction to two popular programmable logic software packages (Altera and Xilinx) and boundary scan software. MARKET: For electronic technicians, system designers, engineers.

High Frequency Communication and Sensing
Fundamentals of Analog Circuits offers comprehensive coverage of a wide, relevant array of topics. It integrates theory, practical circuits, and troubleshooting concepts, keeping mathematical details to a minimum. Delving more deeply into coverage of linear integrated circuits than discrete device circuits, the text guides readers through a system of pedagogical tools that both reinforces and challenges their understanding. *Opens coverage with a five-chapter introduction to discrete devices that include diodes and transistor circuits, plus other topics often omitted in beginning devices texts-such as RF amplifiers, transmission lines, transformer coupled amplifiers, direct coupled amplifiers, and power amplifiers. *Discusses the operational amplifier with separate chapters on active filters and oscillators. *Explores current topics of importance, including instrumentation amplifiers, isolation amplifiers, operational transconductance amplifiers (OTA), phase locked loops, A/D and D/A converters, transducers and more. *Indicates current by meters-not arrows-allowing for easy integration into the curriculum of schools using either conventional current flow or electron flow. *Features

High Frequency Continuous Time Filters in Digital CMOS Processes

Fundamentals of High-frequency CMOS Analog Integrated Circuits

This self-contained book addresses the need for analysis, characterization, estimation, and optimization of the various forms of power dissipation in the presence of process variations of nano-CMOS technologies. The authors show very large-scale integration (VLSI) researchers and engineers how to minimize the different types of power consumption of digital circuits. The material deals primarily with high-level (architectural or behavioral) energy dissipation.

CMOS Analog and Mixed-Signal Circuit Design

Equips students with essential industry-relevant knowledge through in-depth explanations, practical applications, examples, and exercises.

Low-Frequency Noise in Advanced MOS Devices

This text covers the analysis and design of all high-frequency oscillators required to realize integrated transceivers for wireless and wired applications. Starting with an in-depth review of basic oscillator theory, the authors provide a detailed analysis of many oscillator types and circuit topologies.

Fundamentals of High-Frequency CMOS Analog Integrated Circuits

This book introduces readers to the design of adaptive equalization solutions integrated in standard CMOS technology for high-speed serial links. Since continuous-time equalizers offer various advantages as an alternative to discrete-time equalizers at multi-gigabit rates, this book provides a detailed description of continuous-time adaptive equalizers design - both at transistor and system levels-, their main characteristics and performances. The authors begin with a complete review and analysis of the state of the art of equalizers for wireline applications, describing why they are necessary, their types, and their main applications. Next, theoretical fundamentals of continuous-time adaptive equalizers are explored. Then, new structures are proposed to implement the different building blocks of the adaptive equalizer: line equalizer, loop-filters, power comparator, etc. The authors demonstrate the design of a complete low-power, low-voltage, high-speed, continuous-time adaptive equalizer. Finally, a cost-effective CMOS receiver which includes the proposed continuous-time adaptive equalizer is designed for 1.25 Gb/s optical communications through 50-m length, 1-mm diameter plastic optical fiber (POF).

Millimeter-Wave Digitally Intensive Frequency Generation in CMOS

This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. The book is compact, and the graphical quality of the illustrations is outstanding. This book is written for engineers and researchers in industry as well as scientists and Ph.D students at universities. It is also recommendable to graduate students specializing on nanoelectronics and microelectronics or circuit design.

Page 3/8
CMOS RF Modeling, Characterization and Applications

This book presents the theory, analysis, and design of multiband dual-function microwave and millimeter-wave CMOS radio frequency integrated circuit (RFIC) filter-switches capable of simultaneous switching and filtering, which are relevant for advanced multiband RF systems. Typical microwave and millimeter-wave switches are designed only for switching purposes without considering frequency selectivity or filtering. A separate filter is normally needed to be used with a switch to provide a filtering function. This conventional design approach hence leads to higher insertion loss, larger size and higher cost for RF systems. RF systems operating over multiple bands provide numerous advantages and offer more capabilities for communications and sensing than their single-band counterparts. A concurrent multiband system enables one single system to be used over multiple bands simultaneously, leading to optimum size, cost, and power consumption, together with ease of system implementation. Truly concurrent multiband systems require many components to work on multiple bands simultaneously, including concurrent multiband switches. Microwave and millimeter-wave integrated circuits using silicon-based CMOS (or related BiCMOS) RFICs are less expensive and better suited to direct integration with digital ICs than those using III-V compound semiconductor devices. CMOS RFICs are also small and offer low power consumption, making them suitable for portable battery-operated systems. Accordingly, CMOS RFICs are very attractive for RF systems and are the principal choice for commercial wireless markets. The content is divided into six chapters, the first four of which describe and address band-pass, high-pass, and low-pass filters, as well as multiband band-pass filters, the fundamentals of switches, and various switch architectures including single-pole single-throw (SPST), single-pole double-throw (SPDT), transmit/receive (T/R), and ultra-high-isolation switches, the fundamentals and models of MOSFETs used in the design of switches, and the essentials of CMOS RFIC design needed for the filter-switches presented in this book. In turn, the fifth chapter presents the core of the book, namely the design, simulation, and measurement of various CMOS dual-band dual-function SPDT and T/R switches capable of concurrent switching and filtering, as examples to illustrate the design of multiband dual-function filter-switches. These components operate in two different frequency bands centered at approximately 40 and 60 GHz and 24 and 60 GHz. Lastly, a summary and conclusion are provided in Chapter 6.

Radio-Frequency Integrated-Circuit Engineering

A frequency synthesizer is one of the most critical building blocks in any wireless transceiver system. Its design is getting more and more challenging as the demand for low-voltage low-power high-frequency wireless systems continuously grows. As the supply voltage is decreased, many existing design techniques are no longer applicable. This book provides the reader with architectures and design techniques to enable CMOS frequency synthesizers to operate at low supply voltage at high frequency with good phase noise and low power consumption. In addition to updating the reader on many of these techniques in depth, this book will also introduce useful guidelines and step-by-step procedure on behaviour simulations of frequency synthesizers. Finally, three successfully demonstrated CMOS synthesizer prototypes with detailed design consideration and description will be elaborated to illustrate potential applications of the architectures and design techniques described. For engineers, managers and researchers working in radio-frequency integrated-circuit design for wireless applications.

Low-Voltage CMOS RF Frequency Synthesizers

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC’s using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteenchapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. • Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers • Blends analog and microwave engineering approaches for RFIC design at high frequencies • Includes problems at the end of each chapter

Comparators in Nanometer CMOS Technology

High Frequency Communication and Sensing: Traveling-Wave Techniques introduces novel traveling wave circuit techniques to boost the performance of high-speed circuits in standard low-cost production technologies, like complementary metal oxide semiconductor (CMOS). A valuable resource for experienced analog/radio frequency (RF) circuit designers as well as undergraduate-level microelectronics researchers, this book: Explains the basics of high-speed signaling, such as transmission lines, distributed signaling, impedance matching, and other common practical RF background material Promotes a dual-loop coupled

Page 4/8
traveling wave oscillator topology, the trigger mode distributed wave oscillator, as a high-frequency
multiphase signal source Introduces a force-based starter mechanism for dual-loop, even-symmetry,
multiphase traveling wave oscillators, presenting a single-loop version as a force mode distributed wave
antenna (FMDWA) Describes higher-frequency, passive inductive, and quarter-wave-length-based pumped
distributed wave oscillators (PDWOs) Examines phased-array transceiver architectures and front-end circuits
in detail, along with distributed oscillator topologies Devotes a chapter to THz sensing, illustrating a unique
method of traveling wave frequency multiplication and power combining Discusses various data converter
topologies, such as digital-to-analog converters (DACs), analog-to-digital converters (ADCs), and GHz-
bandwidth sigma-delta modulators Covers critical circuits including phase rotators and interpolators, phase
shifters, phase-locked loops (PLLs), delay-locked loops (DLLs), and more It is a significantly challenging task
to generate and distribute high-speed clocks. Multiphase low-speed clocks with sharp transition are
proposed to be a better option to accommodate the desired timing resolution. High Frequency
Communication and Sensing: Traveling-Wave Techniques provides new horizons in the quest for greater
speed and performance.

Systematic Design of Analog CMOS Circuits

Design of Very High-Frequency Multirate Switched-Capacitor Circuits presents the theory and the
corresponding CMOS implementation of the novel multirate sampled-data analog interpolation technique
which has its great potential on very high-frequency analog front-end filtering due to its inherent dual
advantage of reducing the speed of data-converters and DSP core together with the specification relaxation
of the post continuous-time filtering. This technique completely eliminates the traditional phenomenon of
sampled-and-hold frequency-shaping at the lower input sampling rate. Also, in order to tackle physical IC
imperfections at very high frequency, the state-of-the-art circuit design and layout techniques for high-
speed Switched-Capacitor (SC) circuits are comprehensively discussed: -Optimum circuit architecture
tradeoff analysis -Simple speed and power trade-off analysis of active elements -High-order filtering
response accuracy with respect to capacitor-ratio mismatches -Time-interleaved effect with respect to gain
and offset mismatch -Time-interleaved effect with respect to timing-skew and random jitter with non-
uniformly holding -Stage noise analysis and allocation scheme -Substrate and supply noise reduction -Gain-
and offset-compensation techniques -High-bandwidth low-power amplifier design and layout -Very low
timing-skew multiphase generation Two tailor-made optimum design examples in CMOS are presented. The
first one achieves a 3-stage 8-fold SC interpolating filter with 5.5MHz bandwidth and 108MHz output
sampling rate for a NTSC/PAL CCIR 601 digital video at 3 V. Another is a 15-tap 57MHz SC FIR bandpass
interpolating filter with 4-fold sampling rate increase to 320MHz and the first-time embedded frequency
band up-translation for DDFS system at 2.5V. The corresponding chip prototype achieves so far the highest
operating frequency, highest center frequency with highest dynamic range under the lowest supply voltage when compared to the previously reported high-frequency SC filters in CMOS.

Design of Bipolar Monolithic Video-frequency Filters

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits
for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF,
mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-
step design methodologies, end-of chapter problems, and practical simulation and design projects are
provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design.
With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and
students alike an in-depth understanding of device structures and process limitations affecting circuit
performance.

Design of CMOS Phase-Locked Loops

Fundamentals of Modern Photography

Includes plenty of design examples together with the key issues encountered in real-world design scenarios,
for students and practising engineers.

CMOS Time-Mode Circuits and Systems

CMOS (complementary metal oxide semiconductor) is a key digital integrated circuit technology that is
widely used throughout the wireless communications industry. This resource offers guidance on designing
CMOS RF integrated circuits. It provides design details on elemental and advanced CMOS RF circuits.

Op Amps for Everyone

Time-mode circuits, where information is represented by time difference between digital events, offer a
Get Free Fundamentals Of High Frequency Cmos Analog Integrated Circuits

Viable and technology-friendly means to realize mixed-mode circuits and systems in nanometer complementary metal-oxide semiconductor (CMOS) technologies. Various architectures of time-based signal processing and design techniques of CMOS time-mode circuits have emerged; however, an in-depth examination of the principles of time-based signal processing and design techniques of time-mode circuits has not been available—until now. CMOS Time-Mode Circuits and Systems: Fundamentals and Applications is the first book to deliver a comprehensive treatment of CMOS time-mode circuits and systems. Featuring contributions from leading experts, this authoritative text contains a rich collection of literature on time-mode circuits and systems. The book begins by presenting a critical comparison of voltage-mode, current-mode, and time-mode signaling for mixed-mode signal processing and then: Covers the fundamentals of time-mode signal processing, such as voltage-to-time converters, all-digital phase-locked loops, and frequency synthesizers Investigates the performance characteristics, architecture, design techniques, and implementation of time-to-digital converters Discusses time-mode delta-sigma-based analog-to-digital converters, placing a great emphasis on time-mode quantizers Includes a detailed study of ultra-low-power integrated time-mode temperature measurement systems CMOS Time-Mode Circuits and Systems: Fundamentals and Applications provides a valuable reference for circuit design engineers, hardware system engineers, graduate students, and others seeking to master this fast-evolving field.

Fundamentals Of High-Frequency Cmos Analog Integrated Circuits (South Asian Edition)

Fundamentals of RF and Microwave Transistor Amplifiers

This modern book-length treatment gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology, with particular emphasis placed on today's advanced compact models and their physical foundations.

High-Frequency Bipolar Transistors

This textbook is ideal for senior undergraduate and graduate courses in RF CMOS circuits, RF circuit design, and high-frequency analog circuit design. It is aimed at electronics engineering students and IC design engineers in the field, wishing to gain a deeper understanding of circuit fundamentals, and to go beyond the widely-used automated design procedures. The authors employ a design-centric approach, in order to bridge the gap between fundamental analog electronic circuits textbooks and more advanced RF IC design texts. The structure and operation of the building blocks of high-frequency ICs are introduced in a systematic manner, with an emphasis on transistor-level operation, the influence of device characteristics and parasitic effects, and input-output behavior in the time and frequency domains. This second edition has been revised extensively, to expand some of the key topics, to clarify the explanations, and to provide extensive design examples and problems. New material has been added for basic coverage of core topics, such as wide-band LNAs, noise feedback concept and noise cancellation, inductive-compensated band widening techniques for flat-gain or flat-delay characteristics, and basic communication system concepts that exploit the convergence and co-existence of Analog and Digital building blocks in RF systems. A new chapter (Chapter 5) has been added on Noise and Linearity, addressing key topics in a comprehensive manner. All of the other chapters have also been revised and largely re-written, with the addition of numerous, solved design examples and exercise problems.

Design of Very High-Frequency Multirate Switched-Capacitor Circuits

Radio-Frequency Integrated-Circuit Engineering

Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands hi-performance and low-cost products, circuit designers are seeking hi-integration communication devices in cheap CMOS technology. The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface. This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book. The in-depth investigation of the digital CA modulator for fractional-N synthesizers provides insightful design guidelines for this important block.
Get Free Fundamentals Of High Frequency Cmos Analog Integrated Circuits

Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers

This book describes the digitally intensive time-domain architectures and techniques applied to millimeter-wave frequency synthesis, with the objective of improving performance and reducing the cost of implementation. Coverage includes system architecture, system level modeling, critical building block design, and digital calibration techniques, making it highly suitable for those who want to learn about mm-wave frequency generation for communication and radar applications, integrated circuit implementation, and time-domain circuit and system techniques. Highlights the challenges of frequency synthesis at mm-wave band using CMOS technology Compares the various approaches for mm-wave frequency generation (pros and cons) Introduces the digitally intensive synthesizer approach and its advantages Discusses the proper partitioning of the digitally intensive mm-wave frequency synthesizer into mm-wave, RF, analog, digital and software components Provides detailed design techniques from system level to circuit level Addresses system modeling, simulation techniques, design-for-test, and layout issues Demonstrates the use of time-domain techniques for high-performance mm-wave frequency synthesis

Fundamentals of High Frequency CMOS Analog Integrated Circuits

Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide. Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation. This enables the exploration of analog circuit tradeoffs using the gm/ID ratio as a central variable in script-based design flows, and eliminates time-consuming iterations in a circuit simulator. Supported by downloadable MATLAB code, and including over forty detailed worked examples, this book will provide professional analog circuit designers, researchers, and graduate students with the theoretical know-how and practical tools needed to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.

Digital Fundamentals with PLD Programming

MicroCMOS Design covers key analog design methodologies with an emphasis on analog systems that can be integrated into systems-on-chip (SoCs). Starting at the transistor level, this book introduces basic concepts in the design of system-level complementary metal-oxide semiconductors (CMOS). It uses practical examples to illustrate circuit construction so that readers can develop an intuitive understanding rather than just assimilate the usual conventional analytical knowledge. As SoCs become increasingly complex, analog/radio frequency (RF) system designers have to master both system- and transistor-level design aspects. They must understand abstract concepts associated with large components, such as analog-to-digital converters (ADCs) and phase-locked loops (PLLs). To help readers along, this book discusses topics including: Amplifier basics & design Operational amplifier (Opamp) Data converter basics Nyquist-rate data converters Oversampling data converters High-resolution data converters PLL basics Frequency synthesis and clock recovery Focused more on design than analysis, this reference avoids lengthy equations and instead helps readers acquire a more hands-on mastery of the subject based on the application of core design concepts. Offering the needed perspective on the various design techniques for data converter and PLL design, coverage starts with abstract concepts—including discussion of bipolar junction transistors (BJTs) and MOS transistors—and builds up to an examination of the larger systems derived from microCMOS design.

CMOS RFIC Design Principles

A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system’s frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other
digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

MicroCMOS Design

There is an ever increasing trend towards putting entire systems on a single chip. This means that analog circuits will have to coexist on the same substrate along with massive digital systems. Since technologies are optimized with these digital systems in mind, designers will have to make do with standard CMOS processes in the years to come. We address analog filter design from this perspective. Filters form important blocks in applications ranging from computer disc-drive chips to radio transceivers. In this book, we develop the theory and techniques necessary for the implementation of high frequency (hundreds of megahertz) programmable continuous time filters in standard CMOS processes. Since high density poly-poly capacitors are not available in these technologies, alternative capacitor structures have to be found. Met–metal capacitors have low specific capacitance. An alternative is to use the (inherently nonlinear) capacitance formed by MOSFET gates. In Chapter 2, we focus on the use of MOS capacitors as integrating elements. A physics-based model which predicts distortion accurately is presented for a two-terminal MOS structure in accumulation. Distortion in these capacitors as a function of signal swing and bias voltage is computed.

Chapter 3 reviews continuous-time filter architectures in the light of bias-dependent integrating capacitors. We also discuss the merits and demerits of various CMOS transconductance elements. The problems encountered in designing high frequency programmable filters are discussed in detail.

IEICE Transactions on Electronics

CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 µm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits

The operational amplifier ("op amp") is the most versatile and widely used type of analog IC, used in audio and voltage amplifiers, signal conditioners, signal converters, oscillators, and analog computing systems. Almost every electronic device uses at least one op amp. This book is Texas Instruments’ complete professional-level tutorial and reference to operational amplifier theory and applications. Among the topics covered are basic op amp physics (including reviews of current and voltage division, Thevenin's theorem, and transistor models), idealized op amp operation and configuration, feedback theory and methods, single and dual supply operation, understanding op amp parameters, minimizing noise in op amp circuits, and practical applications such as instrumentation amplifiers, signal conditioning, oscillators, active filters, load and level conversions, and analog computing. There is also extensive coverage of circuit construction techniques, including circuit board design, grounding, input and output isolation, using decoupling capacitors, and frequency characteristics of passive components. The material in this book is applicable to all op amp ICs from all manufacturers, not just TI. Unlike textbook treatments of op amp theory that tend to focus on idealized op amp models and configuration, this title uses idealized models only when necessary to explain op amp theory. The bulk of this book is on real-world op amps and their applications; considerations such as thermal effects, circuit noise, circuit buffering, selection of appropriate op amps for a given application, and unexpected effects in passive components are all discussed in detail. *Published in conjunction with Texas Instruments *A single volume, professional-level guide to op amp theory and applications *Covers circuit board layout techniques for manufacturing op amp circuits.

Copyright code : b3bc9af1f6ad8902e324d9b7d4f1edf